I just asked ChatGPT how to detect and handle multicollinearity (stg I probably already knew before). Here's the solution code:
import pandas as pd
import numpy as np
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Load data into a pandas DataFrame
data = pd.read_csv('your_data.csv')
# Create a list of column names to check for multicollinearity
cols_to_check = ['feature1', 'feature2', 'feature3', ...]
# Create a new DataFrame with only the columns to check
data_to_check = data[cols_to_check]
# Calculate the VIF scores for each feature
vif_scores = pd.DataFrame()
vif_scores["Feature"] = data_to_check.columns
vif_scores["VIF"] = [variance_inflation_factor(data_to_check.values, i) for i in range(data_to_check.shape[1])]
# Print the VIF scores
print(vif_scores)
Hiç yorum yok:
Yorum Gönder